Nanoscale resolution scanning thermal microscopy using carbon nanotube tipped thermal probes.
نویسندگان
چکیده
We present an experimental proof of concept of scanning thermal nanoprobes that utilize the extreme thermal conductance of carbon nanotubes (CNTs) to channel heat between the probe and the sample. The integration of CNTs into scanning thermal microscopy (SThM) overcomes the main drawbacks of standard SThM probes, where the low thermal conductance of the apex SThM probe is the main limiting factor. The integration of CNTs (CNT-SThM) extends SThM sensitivity to thermal transport measurement in higher thermal conductivity materials such as metals, semiconductors and ceramics, while also improving the spatial resolution. Investigation of thermal transport in ultra large scale integration (ULSI) interconnects, using the CNT-SThM probe, showed fine details of heat transport in ceramic layers, vital for mitigating electromigration in ULSI metallic current leads. For a few layer graphene, the heat transport sensitivity and spatial resolution of the CNT-SThM probe demonstrated significantly superior thermal resolution compared to that of standard SThM probes achieving 20-30 nm topography and ~30 nm thermal spatial resolution compared to 50-100 nm for standard SThM probes. The outstanding axial thermal conductivity, a high aspect ratio and robustness of CNTs can make CNT-SThM the perfect thermal probe for the measurement of nanoscale thermophysical properties and an excellent candidate for the next generation of thermal microscopes.
منابع مشابه
Scanning thermal microscopy of carbon nanotubes using batch-fabricated probes
We have designed and batch-fabricated thin-film thermocouple cantilever probes for scanning thermal microscopy ~SThM!. Here, we report the use of these probes for imaging the phonon temperature distribution of electrically heated carbon-nanotube ~CN! circuits. The SThM images reveal possible heat dissipation mechanisms in CN circuits. The experiments also demonstrate that heat flow through the ...
متن کاملThermometry at the nanoscale.
Non-invasive precise thermometers working at the nanoscale with high spatial resolution, where the conventional methods are ineffective, have emerged over the last couple of years as a very active field of research. This has been strongly stimulated by the numerous challenging requests arising from nanotechnology and biomedicine. This critical review offers a general overview of recent examples...
متن کامل[1011] Scanning Thermal Microscopy on 2D Materials at cryogenic temperatures
Thermal transport in Graphene is of great interest due to its high thermal conductivity, for both fundamental research and future applications such as heat dissipation in electronic devices. Although, the thermal conductivity of graphene can reduce depending on the coupling to the substrate [1]. In this work, we report high-resolution imaging of nanoscale thermal transport in single and few lay...
متن کاملMeasuring, Shortening and Functionalizing Carbon Nanotube Tipped AFM Probes for DNA Sequencing
A method is presented to indirectly measure and shorten carbon nantoubes grown from the tips of atomic force microscope (AFM) probes. The measurement component exploits the nanotubes ability to elastically buckle and requires only those signals and actuators available on a standard AFM. The shortening operation is facilitated by electric arcing using a conducting niobium substrate. The shorteni...
متن کاملShortening Carbon Nanotube-Tipped AFM Probes
A method is presented to indirectly measure and shorten carbon nantoubes grown from the tips of atomic force microscope (AFM) probes. The measurement component exploits the nanotubes ability to elastically buckle and requires only those signals and actuators available on a standard AFM. The shortening operation is facilitated by electric arcing using a conducting niobium substrate. The shorteni...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 16 3 شماره
صفحات -
تاریخ انتشار 2014